Characterization of some causality conditions through the continuity of the Lorentzian distance

نویسنده

  • E. Minguzzi
چکیده

A classical result in Lorentzian geometry states that a strongly causal spacetime is globally hyperbolic if and only if the Lorentzian distance is finite valued for every metric choice in the conformal class. It is proven here that a non-total imprisoning spacetime is globally hyperbolic if and only if for every metric choice in the conformal class the Lorentzian distance is continuous. Moreover, it is proven that a non-total imprisoning spacetime is causally simple if and only if for every metric choice in the conformal class the Lorentzian distance is continuous wherever it vanishes. Finally, a strongly causal spacetime is causally continuous if and only if there is at least one metric in the conformal class such that the Lorentzian distance is continuous wherever it vanishes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of causal simplicity and causal continuity through the continuity of the Lorentzian distance

A classical result in Lorentzian geometry states that a strongly causal spacetime is globally hyperbolic if and only if the Lorentzian distance is finite valued for every metric choice in the conformal class. It is proven here that a non-total imprisoning spacetime is causally simple if and only if for every metric choice in the conformal class the Lorentzian distance is continuous wherever it ...

متن کامل

On the causal properties of warped product spacetimes

It is shown that the warped product spacetime P = M×f R and the original spacetime M share necessarily the same causality properties, the only exceptions being the properties of causal continuity and causal simplicity which present some subtleties. In this respect it is shown that the direct product spacetime P = M × R is causally simple if and only if (M, g) is causally simple, has a continuou...

متن کامل

Harmonicity and Minimality of Vector Fields on Lorentzian Lie Groups

‎We consider four-dimensional lie groups equipped with‎ ‎left-invariant Lorentzian Einstein metrics‎, ‎and determine the harmonicity properties ‎of vector fields on these spaces‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional ‎restricted to vector fields‎. ‎We also classify vector fields defining harmonic maps‎, ‎and calculate explicitly the energy of t...

متن کامل

Contributions to differential geometry of spacelike curves in Lorentzian plane L2

‎In this work‎, ‎first the differential equation characterizing position vector‎ ‎of spacelike curve is obtained in Lorentzian plane $mathbb{L}^{2}.$ Then the‎ ‎special curves mentioned above are studied in Lorentzian plane $mathbb{L}%‎‎^{2}.$ Finally some characterizations of these special curves are given in‎ ‎$mathbb{L}^{2}.$‎

متن کامل

On $(epsilon)$ - Lorentzian para-Sasakian Manifolds

The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009